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Abstract

Here, we show that the set of positive integers of the form p+2n−n where p is prime
has a positive lower asymptotic density, thus answering a question of Z.-W. Sun.
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1. Introduction

In 1934, Romanoff [3] showed that the set R of integers of the form p+2n where p is
a prime has positive lower asymptotic density. That is, if we put R (x) = {p+2n ≤ x}, then

liminf
x→∞

#R (x)
x

> 0.

In 2010, Lee [2] studied a variant of Romanoff’s problem with the powers of 2 replaced by
the Fibonacci numbers. With {Fn}n≥1 being the Fibonacci sequence given by F1 = 1, F2 = 1
and Fn+2 = Fn+1 +Fn for n ≥ 1, Lee proved that the set of positive integers of the form
p+Fn has a positive lower density. A far reaching generalization of the above two results
was given by Ballot and Luca in [1], where it is shown that if {un}n≥1 is a non-degenerate
integral linear recurrent sequence whose characteristic polynomial has simple roots, then
the set of positive integers of the form p+ un for some prime p and integer n ≥ 1 has a
positive lower asymptotic density. In the above statement, it is further assumed that if the
recurrence is of order 1 (that is, a geometrical progression) then its only root is of absolute
value larger than 1, just to avoid the case of a bounded sequence {un}n≥1 for which the
conclusion would not hold.
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The method of attack in the above three results is the same. Namely, for a sequence
{wn}n≥1 of positive integers and a positive integer m put

rw(m) = #{(p,n) : m = p+wn}.

Clearly, m is of the form p+wn for some prime p and positive integer n if and only if
r(m) 6= 0 (for simplicity, we write r(m) instead of rw(m)). So, we need to show that we
have #{m≤ x : r(m) 6= 0}� x for sufficiently large x. Via Cauchy-Schwartz inequality, we
have (

∑
m≤x

r(m)

)2

≤

 ∑
m≤x

r(m)6=0

1

(∑
m≤x

r(m)2

)
, (1.1)

and we need a lower bound on the first factor in the right–hand side. This we obtain from
(1.1) provided that we have a lower bound on the left–hand side and an upper bound on the
second factor on the right–hand side.

For the left–hand side, we assume that {wn}n≥1 has exponential growth; that is, that
ρn

1 < wn < ρn
2 holds for all n > n0 with some 1 < ρ1 < ρ2. Then

∑
m≤x

r(m) ≥ #({p : p≤ x/2}×{m : wm ≤ x/2})

≥ #({p : p≤ x/2}×{m > n0 : ρ
m
2 ≤ x/2})

≥ π(x/2)(blog(x/2)/ logρ2c−n0)� x.

For the right–hand side, assume further that {wn}n≥1 is linearly recurrent. It is then shown
in all the above works that

∑
m≤x

r(m)2� x ∑
1≤n≤x

µ(n)2

nzw(n)
, (1.2)

where zw(n) is the following function defined on the set of squarefree numbers:

(i) In case wn = 2n, then zw(n) = `2(n/gcd(2,n)) where `2(m) is the order of 2 modulo
m. In particular, if n is squarefree, then z(n) = `2(n) if n is odd and z(n) = `2(n/2) if
n is even.

(ii) In case wn = Fn, then zw(n) = max{ep(F) : p | n}, where for a prime p, ep(F) denotes
the length of the period of the Fibonacci sequence modulo p.

(iii) In case {wn}n≥1 is non-degenerate linearly recurrent and its characteristic polynomial
has only simple roots, let k(p) denote the period of {wn}n≥1 modulo p for a prime p
and for any integer y let us put ν(p,y) = #{1≤ m≤ k(p) : wn ≡ y (mod p)} for the
frequency with which wn represents y modulo p as n runs through an entire period
modulo p. Put νp = max{ν(p,y) : y = 1,2, . . . , p} and put z(p) = k(p)/νp. Finally,
for a squarefree n, let z(n) = max{z(p) : p | n}.

So, in all three cases, the conclusion was reached by proving that

∑
n≥1

µ(n)2

nzw(n)
= O(1). (1.3)
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In the general approach of Ballot and Luca, the function zw(n) is defined in the way ex-
plained at (iii) above for all linearly recurrent sequences {wn}n≥1, and then estimate (1.2)
holds. Ballot and Luca also proved that estimate (1.3) holds for all non degenerate linearly
recurrent sequences wn whose characteristic polynomial has only simple roots. So, even
if {wn}n≥1 does not have only simple roots, one can still obtain the same conclusion as in
the theorems of Romanoff, Lee, as well as, Ballot and Luca concerning the set of numbers
of the form p+wn provided that one can prove the convergence of series (1.3) for that
particular sequence {wn}n≥1.

This is what we do in the remaining of this note for the sequence of general term wn =
2n−n and thus obtain the following result.

Theorem 1.1. The set of integers of the form {p+2n−n} (where p is a prime number) is
of positive lower density.

2. Proof of Theorem 1.1

2.1. Preliminaries

Here, we make explicit some of the parameters k(p) and zw(p) for the sequence of
general term wn = 2n−n.

Lemma 2.1. We have k(2) = 2 and k(p) = `2(p)p for all odd primes p.

Proof. The fact that k(2) = 2 it is clear since 2n− n ≡ n (mod 2) for all n ≥ 1. As for
k(p) for an odd p, let k be such that wn+k ≡ wn (mod p) for all n ≥ 1. Making n = 1,2
above we get 2k+1− (k+ 1) ≡ 1 (mod p) and 2k+2− (k+ 2) ≡ 2 (mod p). Writing then
a := 2k+1, b := k+1, we get a−b≡ 1 (mod p) and 2a−b−1≡ 2 (mod p). Subtracting
the above relations we get a≡ 2 (mod p), so 2k+1≡ 2 (mod p), therefore 2k ≡ 1 (mod p).
This shows that `2(p) | k. Since now we know that a≡ 2 (mod p), we get b≡ 1 (mod p),
so k+ 1 ≡ 1 (mod p), therefore p | k. Since `2(p) | p− 1, we have that `2(p) and p are
coprime, so `2(p)p | k. Conversely, it is easy to see that wn+`2(p)p ≡ wn (mod p) for all
n≥ 1, so indeed k(p) = `2(p)p.

The following is the analogue of Lemma 10 in [1].

Lemma 2.2. The diophantine equation∣∣∣∣∣∣
1 0 1

2x1 x1 1
2x2 x2 1

∣∣∣∣∣∣= 0,

has no integer solutions x2 > x1 ≥ 1.

Proof. Expanding the determinant, we get the equation 2x1(2x2−x1x1− x2) = x1− x2. Thus,
2x1 < x2. Therefore

2x2−x1x1− x2 ≥
2x2

2x1
− x2 >

2x2

x2
− x2 ≥ 0 (x2 ≥ 4),
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where the last inequality follows because 2x2 ≥ x2
2 holds for x2 ≥ 4, a fact that can be proved

by induction. Thus, 2x1(2x2−x1x1−x2)≥ 0 cannot equal x1−x2 which is negative for x2≥ 4.
It follows that 1≤ x1 < x2 ≤ 3, and these cases can be checked by a computation.

Let us now define a prime p to be bad if

νp > 2b(`2(p)p)6/7c+2.

Put P = {p : p bad} and for a positive real number x let P (x) = P ∩ [1,x].

Lemma 2.3. We have
#P (x)� x6/7. (2.4)

In particular,

∑
p∈P

log p
p

(2.5)

is finite.

Proof. Let p ∈ P (x) and y be such that νp = ν(p,y). Embed the interval [0, `2(p)p) into
the union of disjoint intervals

Ii :=
[
i(`2(p)p)1/7,(i+1)(`2(p)p)1/7

)
for i = 0,1, . . . ,K,

where K := b(`2(p)p)6/7c. Since νp > 2K + 2, one of these intervals, say Ii, will contain
three solutions n1 < n2 < n3 to the congruence wni ≡ y (mod p). We write n2 = n1 + x1,
n3 = n1 + x2 for some integers 1 ≤ x1 < x2 ≤ (`2(p)p)1/7. Note that (`2(p)p)1/7 < x2/7.
The above congruences can be written as

2n1 ·1+(−1)0− (n1 + y) ·1 ≡ 0 (mod p);

2n1 ·2x1 +(−1)x1− (n1 + y) ·1 ≡ 0 (mod p);

2n1 ·2x2 +(−1)x2− (n1 + y) ·1 ≡ 0 (mod p).

In particular, the vector x = (2n1 ,−1,−(n1 + y))T is a solution to the homogeneous system
Ax≡ 0 (mod p), where

A =

 1 0 1
2x1 x1 1
2x2 x2 1

 .

Let D(x1,x2) be determinant of the above matrix A. By Lemma 2.2, we have that D(x1,x2) 6=
0. Thus, p divides the nonzero integer D(x1,x2). It then follows that

∏
p∈P (x)

p | ∏
1≤x1<x2≤x2/7

|D(x1,x2)| .

By Hadamard’s inequality,

|D(x1,x2)| ≤ 21/2(22x1 + x2
1 +1)1/2(22x2 + x2

2 +1)1/2 < 22x2+1 < 32x2 ,
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where we used the fact that 22m ≥ m2 +1 holds for all positive integers m. Since 2 6∈ P , we
get that

3#P (x) ≤ ∏
p∈P (x)

p≤ ∏
1≤x1<x2≤x2/7

32x2 < 32x6/7
,

giving that #P (x) < 2x6/7. This proves (2.4). The claim about the finiteness of the series
shown at (2.5) follows from (2.4) by Abel’s summation formula.

2.2. Final step in the proof of Theorem 1.1

We need to show that the series shown at (1.3) converges. For simplicity, we write z(n)
instead of zw(n). Let P(n) be the largest prime factor of n. We split that series as follows:

∑
n≥1

µ(n)2

nz(n)
:= S1 +S2,

where

S1 = ∑
n≥1

P(n) is bad

µ(n)2

nz(n)
and S2 = ∑

n≥1
P(n) is not bad

µ(n)2

nz(n)
.

For S1, we just use the fact that z(n)≥ 1, to get that S1 is upper bounded by

S′1 = ∑
n,P(n)∈P

µ(n)2

n
= ∑

p∈P

1
p ∑

m,P(m)<p

µ(m)2

m

≤ ∑
p∈P

1
p ∏

q<p

(
1+

1
q

)
� ∑

p∈P

log p
p

= O(1),

by (2.5). As for S2, note that if p 6∈ P , then νp ≤ 2b(`2(p)p)6/7c+2, giving that

z(n)≥ z(p) = k(p)/νp > 0.25(`2(p)p)1/7 ≥ 0.25p1/7.

Thus, S2 is upper bounded by

S′2 = ∑
n≥1

4µ(n)2

nP(n)8/7 = ∑
p≥2

4
p8/7 ∑

m,P(m)<p

µ(m)2

m

= 4 ∑
p≥2

1
p8/7 ∏

q<p

(
1+

1
q

)
� ∑

p≥2

log p
p8/7 = O(1).

Hence, S1 +S2 ≤ S′1 +S′2 = O(1), and the theorem is proved.
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